Math 2A First Order ODE Practice: Identifying the Approach to Solving a DE

To show that a DE is	first write it in the standard form (identify values of all	prove that	change standard form by	in new DE, prove that
	constants \& functions in template)			
separable	$\frac{d y}{d x}=g(x) p(y)$	N/A	N/A	N/A
linear	$\frac{d y}{d x}+p(x) y=g(x)$	N/A	multiply by $\mu(x)=e^{\int p(x) d x}$	$a_{0}(x)=\frac{d}{d x} a_{1}(x)$
			to get $a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=b(x)$	

exact after integrating factor involving only x
exact after integrating factor involving only y
exact after integrating factor of form $x^{a} y^{b}$
first write it in the standard form prove that
(identify values of all constants \& functions in template)
$\frac{d y}{d x}=g(x) p(y)$
$\frac{d y}{d x}+p(x) y=g(x)$
change standard form by
multiply by $\mu(x)=e^{\int p(x) d x} \quad a_{0}(x)=\frac{d}{d x} a_{1}(x)$
to get $a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=b(x)$
exact

